Solving Multilinear Systems via Tensor Inversion
نویسندگان
چکیده
Higher order tensor inversion is possible for even order. This is due to the fact that a tensor group endowed with the contracted product is isomorphic to the general linear group of degree n. With these isomorphic group structures, we derive a tensor SVD which we have shown to be equivalent to well-known canonical polyadic decomposition and multilinear SVD provided that some constraints are satisfied. Moreover, within this group structure framework, multilinear systems are derived and solved for problems of high-dimensional PDEs and large discrete quantum models. We also address multilinear systems which do not fit the framework in the least-squares sense. These are cases when there is an odd number of modes or when each mode has distinct dimension. Numerically we solve multilinear systems using iterative techniques, namely, biconjugate gradient and Jacobi methods.
منابع مشابه
Formulating an n-person noncooperative game as a tensor complementarity problem
In this paper, we consider a class of n-person noncooperative games, where the utility function of every player is given by a homogeneous polynomial defined by the payoff tensor of that player, which is a natural extension of the bimatrix game where the utility function of every player is given by a quadratic form defined by the payoff matrix of that player. We will call such a problem the mult...
متن کاملAn Iterative Reweighted Method for Tucker Decomposition of Incomplete Multiway Tensors
We consider the problem of low-rank decomposition of incomplete multiway tensors. Since many real-world data lie on an intrinsically low dimensional subspace, tensor low-rank decomposition with missing entries has applications in many data analysis problems such as recommender systems and image inpainting. In this paper, we focus on Tucker decomposition which represents an N th-order tensor in ...
متن کاملLearning Canonical Correlations of Paired Tensor Sets Via Tensor-to-Vector Projection
Canonical correlation analysis (CCA) is a useful technique for measuring relationship between two sets of vector data. For paired tensor data sets, we propose a multilinear CCA (MCCA) method. Unlike existing multilinear variations of CCA, MCCA extracts uncorrelated features under two architectures while maximizing paired correlations. Through a pair of tensor-to-vector projections, one architec...
متن کاملSemi-Orthogonal Multilinear PCA with Relaxed Start
Principal component analysis (PCA) is an unsupervised method for learning low-dimensional features with orthogonal projections. Multilinear PCA methods extend PCA to deal with multidimensional data (tensors) directly via tensor-to-tensor projection or tensor-to-vector projection (TVP). However, under the TVP setting, it is difficult to develop an effective multilinear PCA method with the orthog...
متن کاملMoment tensor and stress inversion for an active fault system in west part of Lut-Block, Iran
Iran is one of the most tectonically active regions on the Alpine-Himalayan earthquake belt. Eastern Iran, nowadays, is one of the most active regions of the country. The occurrence of several destructive earthquakes during the past 50 years provides the evidence for the seismic activity in this region. The earthquakes are mostly concentrated around the Lut-block. There are strike-slip fault sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 34 شماره
صفحات -
تاریخ انتشار 2013